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a b s t r a c t

In the Southeastern US, organic carbon (OC) comprises about 30% of the PM2.5 mass. A large fraction of
OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in
the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate
secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM2.5 chemical
composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer
and the regression methods, which rely on the use of tracer species of primary and secondary OC
formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass
balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary
and secondary fractions based on source profiles and statistically-derived common factors, respectively.
CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The
comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method
having the lowest uncertainty among the four methods. We compared the estimates with the water
soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is
negligible, and found a similar trend with SOC estimates from the regression method. The regression
method also showed the strongest correlation with daily SOC estimates from CMB using molecular
markers. The regression method shows advantages over the other methods in the calculation of a long-
term series of SOC estimates.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the Southeastern US, OC comprises approximately 30% of the
PM2.5 mass. OC can be of both primary and secondary origin.
Primary OC (POC) is mainly emitted from fossil fuel combustion in
stationary, area and mobile sources, and biomass combustion (e.g.,
forest fires). In Atlanta, the major sources of POC are motor vehicles
and biomass burning (Lee et al., 2007; Zheng et al., 2002). Secondary
OC (SOC) is formed in the atmosphere byphotochemical reactions of
volatile organic compounds (VOCs) of biogenic and anthropogenic
origin followed by the condensation of reaction products onto
particles (Kroll and Seinfeld, 2008). At present, there is no
nology, Environmental Engi-
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measurement approach that definitively differentiates between
POC and SOC, though detailed speciation can identify specific
components that would be dominantly primary or secondary.
Epidemiologic studies suggest differences in health outcomes
associated with POC attributed to mobile and biomass burning
sources, versus other OC, presumably SOC (Sarnat et al., 2008).

Typically, as part of the Speciation Trends Network for example,
OC in PM2.5 is measured on 24-hour filter-based samples, although
greater resolution is possible using semi-continuous in situ instru-
ments (Solomon et al., 2000). The amount of OC on the filters is
quantified using thermal-optical techniques (Chow et al., 1993;
Turpin et al., 2000). These techniques are designed to measure the
total OC fraction, and do not distinguish between primary and
secondary components. Since the formation of SOC leads
to oxygenated, polar compounds, it has been suggested that the
water soluble fraction of the OC (WSOC) is a surrogate for the SOC
when biomass burning impact is negligible (Hennigan et al., 2008;
Weber et al., 2007). WSOC can be measured in the laboratory using
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Fig. 1. Time series of primary and secondary species and OC/EC ratio during (a) summer
2002 (b) and winter 2002. During summer, the circled days have a decrease in O3

concentrations, and high levels of OC, EC and CO, denoting a predominance of primary
activity. For those days the average (OC/EC) ratio was 1.7. During winter, days with ozone
concentrations below the 25th percentile had an average (OC/EC) ratio of 2.4.
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PM2.5filters andposteriori separation of thewater soluble fraction or
in-situ using a Particle Into Liquid Sampler (PILS) that captures
particles inwater fromwhere the carbonaceous fraction is quantified
using a Total Organic Carbon (TOC) analyzer (Sullivan et al., 2006).
Summertime measurements in Atlanta find that WSOC is about
55e65% of total OC.

Different methods have been used to estimate SOC. Methods
that rely on the use of tracer species of primary activity and
secondary photochemistry formation include the EC tracer
and regression methods. Receptor models have also been used to
estimate primary and secondary fractions in the PM2.5, notably
Chemical Mass Balance (CMB) and Positive Matrix Factorization
(PMF) methods. While estimates from chemical transport models
(CTM) are available, simulated SOC values are viewed as highly
uncertain, and likely biased (Eder and Yu, 2006; Tesche et al., 2006).
Some studies have used organic molecular markers and specific
compounds to separate the POC and SOC fractions (Zheng et al.,
2006). Given that speciated organic compound concentrations are
not widely available and that their measurement is resource
intensive, methods that rely on typically available PM2.5 speciation
and gaseous data are preferable. Such methods are used in this
study to construct multi-year time series of pollutants for epide-
miologic analysis and air quality policy effectiveness studies.

Estimates of SOC in Atlanta vary between methods and have
focused on different periods of time from one or two months
during summer and winter to three years (Blanchard et al., 2008;
Lee et al., 2008b; Lim and Turpin, 2002; Marmur et al., 2005;
Zheng et al., 2007; Zheng et al., 2002). These studies have defined
uncertainties in the SOC estimates as the standard deviation of the
mean, with the exception of Blanchard et al. (2008) who estimated
uncertainties as one-half the range from alternative regressions.
The standard deviation represents a good measure of the variation
in SOC estimates but does not consider the different types
of uncertainties involved in the SOC calculation (e.g. ambient
measurements, source profiles, regression coefficients, primary
ratios, fitting methods). Here, we assess and compare the uncer-
tainty in the SOC estimates from four different methods, consid-
ering uncertainties in input datasets and methods.

2. Methods

Nine-year time series of SOC concentrations and respective
uncertainties are estimated using four methods: EC tracer (Turpin
and Huntzicker, 1991), regression (Blanchard et al., 2008), CMB
(Watson et al.,1984) andPMF (Paatero andTapper,1994). The results
are then compared under the following metrics in order to choose
the most accurate estimate: uncertainties (lowest uncertainty
preferred) estimated by propagation of errors (Bevington and
Robinson, 2003), seasonal estimates (summer SOC should exceed
winter), day-to-day variability (smooth for a secondary pollutant),
comparison with related work (i.e. molecular marker-based CMB)
and comparisonwith WSOC measurements (as a surrogate of SOC).

2.1. EC tracer method

TheEC tracermethod consists of estimating a primaryOC/EC ratio
during periods when SOC is expected to be negligible (e.g. night,
winter, overcast, clean background, minimal long range transport).

POC ¼ ðOC=ECÞp*ECþ ðOCÞnc (1)

SOC ¼ OC� POC (2)

Here (OC)nc is the non-combustion contribution to the OC, from
sources such as vegetative detritus, tire wear and industrial
processes. Equation (2) can result in negative values of SOC, in
which case SOC is set to zero.

Typically, (OC/EC)p in Eq. (1) is determined from the linear
regression between OC and EC (e.g. Demming regression, Saylor
et al., 2006) over a long period of time, with the intercept deter-
mining (OC)nc. Alternatively, (OC/EC)p can be estimated from days
when primary or secondary activity is more pronounced (such as in
Cabada et al., 2004). For this study, the (OC/EC)p ratio was estimated
in three steps: i) we selected days from 1999e2007 with low
photochemical activity, defined as days with O3 (max 8 h average)
concentration below the 25th percentile, O3< 41ppb in summer and
O3< 20ppb in winter ii) we plotted time series of OC, EC, OC/EC, CO
and O3 and identified days when primary activity was more
pronounced (an example of this selection is shown in Fig. 1) and iii)
we computed averaged OC/EC ratios on those days, obtaining 1.7 for
summer and 2.4 for winter. The application of a unique (OC/EC)p
ratio for year-round estimatesmay not account for seasonal variation
(Snyder et al., 2009). The larger winter value suggests an increased
influence of biomass burning which has a higher OC/EC primary
emissions ratio. Other studies in the area have found similar values
for these ratios. Using time-resolved OC fractions in summer time for
the estimation of SOC, Lim and Turpin (2002) found a ratio (OC/EC)P
of 1.8 as reasonable and 2.1 as the upper limit. Using a multiscale air
quality model over the United States, Yu et al. (2007) found (OC/EC)p
ratios for Atlanta of 1.76 in summer and 2.76 inwinter. For this study,
the EC tracer refers exclusively to the application of the method
using summer/winter ratios. Variation of the (OC/EC)p ratio on time
scales less than half a year is beyond the scope of this study.

The initial estimate of the uncertainty (s) is calculated using
propagation of relative errors.

s2POC ¼ s2EC

�
OC
EC

�2

P
þ s2ðOCECÞPEC

2 þ s2OCnc
(3)

Here, the uncertainty in the EC and OC components was calculated
using the procedure of Polissar et al. (1998). Briefly, the uncertainty
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in the observed concentrations was set as the sum of the analytical
uncertainty times the concentration plus one-third of the detection
limit (DL) value. The uncertainty in the primary (OC/EC) ratio was
defined as one standard deviation of the estimated ratios. The
uncertainty in the secondary organic fraction was calculated
by propagating the uncertainties in the POC fraction and the
measured OC.

s2SOC ¼ s2OC þ s2POC (4)

The rootmean square average of the uncertainty for the POC and
SOC estimates over the nine-year period of time is calculated as

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

s2ij

vuut (5)

where sij is the uncertainty in the ith parameter on the jth day, with
a total of N days.
2.2. Regression method

The regression method uses tracers of primary emissions (EC,
8-h average CO) as well as photochemical activity (8-h average O3,
sulfate SO4, nitrate NO3) to determine POC and SOC. We modified
this approach by adding potassium (XRF K from the SEARCH data)
to identify POC from biomass burning which accounts for a large
part of the POC in the southeastern US (Kim et al., 2003, 2004):

OC ¼ aþ b*ECþ c*COþ d*O3 þ e*lagðO3Þ þ f *SO4

þ g*NO3 þ h*K ð6Þ

POCo ¼ b*ECþ c*COþ h*K (7)

SOCo ¼ d*O3 þ e*lagðO3Þ þ f *SO4 þ g*NO3 (8)

The regression coefficients (aeh) are determined using least square
fitting (LSF), and each coefficient is evaluated for its statistical
significance. Here POCo and SOCo are initial estimates for each day. To
guarantee that the sum of POC and SOC is equal to the observed OC,
we distributed the initial estimates based on themass fraction ratios.

POC ¼
�

POCO
POCO þ SOCO

�
OC (9)

SOC ¼
�

SOCO
POCO þ SOCO

�
OC (10)

On a year-round basis, multivariate regression of OC with EC, CO, K,
SO4, NO3 and O3 led to an R2¼ 0.65 (n¼ 2921), suggesting common
sources between OC and primary and secondary pollutants. In
summer, regression of OC with EC, CO, K, SO4, NO3 and O3 results in
a slightly stronger statistical fit (R2¼ 0.68, n¼ 1476). The regression
coefficient for NO3 was not statistically significant (p> 0.05) and the
independent term ‘a’ (in Eq. (6)) had the lowest significance; there-
fore, the regression was performed with an intercept of zero. In this
case, the significance of secondary tracers, such as O3 (t-Stat¼ 22.7,
p< 0.01), is comparable with primary tracers, such as EC (t-
Stat¼ 21.4, p< 0.01). In winter, regression of OC with EC, CO, K, NO3
andO3 results in a stronger statisticalfit (R2¼ 0.78,n¼ 1427) than the
summer regression. The independent term ‘a’ and the SO4 regression
coefficient were not statistically significant (p> 0.05; EC (t-
Stat¼ 26.8, p< 0.01) and K (t-Sat¼ 13.6, p< 0.01) were the most
significant coefficients, suggesting a strong impact of mobile sources
and biomass burning on OC. Hereafter the regression method will
refer to the application of themethod using separate summer/winter
regression results.

We calculate the uncertainty by propagating errors for every
term in the regression method. The uncertainty in each regression
coefficient (i.e. sb) was obtained from the standard error in the
regression analysis and the uncertainty in the species concentra-
tion (i.e. sEC) was estimated using the procedure of Polissar et al.
(1998). The uncertainties were propagated to find daily uncer-
tainties in POC and SOC:

ðsPOCÞ2 ¼ ðsECÞ2*b2 þ ðsCOÞ2*c2 þ ðsKÞ2*h2 þ ðsbÞ2*EC2

þ ðscÞ2*CO2 þ ðshÞ2*K2 (11)

ðsSOCÞ2¼ ðsO3Þ2*d2þðsSO4Þ2*f 2þðsNO3Þ2*g2þðsdÞ2*O2
3� �2 � �
þ sf *SO2

4þ sg
2
*NO2

3 (12)

The average uncertainties for the POC and SOC estimates, over
the nine-year period, are calculated using the root mean square
average (Eq. (5)).

2.3. Chemical mass balance (CMB)

To estimate the SOC fraction in the CMB model, we include six
primary source profiles and four profiles that represent secondary
species formation (Marmur et al., 2005). PM2.5 components NO3,
SO4, NH4, EC, OC, and metals Br, Al, Si, Ca, Fe, K, Mn, Pb, Cu, Se, Zn
and Cr were used as fitting species. Primary source profiles used
include gasoline vehicles (LDGV), diesel vehicles (HDDV), soil dust
(SDUST), biomass burning (BURN), coal-fired power plants (CFPP)
and cement production (CEM). Both BURN and LDGV have high
fractions of OC in their source profiles (0.64 and 0.55 respectively).
Profiles for components formed from atmospheric reactions are
secondary ammonium sulfate (AMSULF), secondary ammonium
bisulfate (AMBSLFT), secondary ammonium nitrate (AMNITR) and
other OC (OTHROC). CMB reproduces 91% of PM2.5 mass (R2¼ 0.90,
n¼ 2698, c2¼ 3.39), apportioning 15% of the PM2.5 mass as ‘other
OC’ which we take as the SOC fraction. It is recognized that there
are potential non-secondary sources of OTHROC, including vege-
tative detritus, and unapportioned primary organic carbon in this
source (e.g., Zheng et al., 2002) and therefore OTHROC may not
include only SOC (Ding et al., 2008).

Uncertainties in CMB source contributions are given by the
model and were calculated using a weighted variance approach:

sgik ¼
Xn
i¼1

2
4 f 2kj
s2Cij

þPN
k¼1s

2
fjk
g2k

3
5
�1=2

(13)

where fkj is the source profile of species j in source k, sfjk is the
uncertainty in the profile, gk is the source contribution of source k,
sgik is the uncertainty in the contribution, and scij is the uncertainty
in the measured concentration cij. The uncertainty in the POC
fraction was estimated by propagating the uncertainties in the
organic carbon fraction of the primary sources (SDUST, BURN,
HDDV, LDGV, CFPP, CEM) and the uncertainty in the SOC fraction
was estimated propagating the uncertainties in the POC and the
measured OC (such as in Eq. (4)). The average uncertainties for the
POC and SOC estimates, over the nine-year period, are calculated
using the root mean square average (Eq. (5)).

2.4. Positive matrix factorization (PMF)

We used EPA-PMF 3.0 (Norris and Vedantham, 2008) for our
simulations and classified species in the input model based on the
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signal/noise ratio. Strong species for this study were NO3, SO4, NH4,
EC, OC, Br, Al, Si, Ca, Fe, and K. Weak species were Mn, Pb, Cu, Se, Zn
and Cr. Since PM2.5 was included and classified as a total variable,
the model assigns it as a weak species in order to not double count
its importance (Reff et al., 2007). We used 10 convergent runs and
chose the runwith the lowest error in theminimization of the mass
balance equation. PMF reproduces 87% of the PM2.5 (R2¼ 0.91,
n¼ 2931). To identify the optimum number of factors, we ran PMF
with five, six and seven factors and obtained the best fit with six
factors (soil dust, biomass burning, secondary sulfate, secondary
nitrate, cement and mobile sources). The SOC fraction in PMF is
calculated by adding the OC fractions in the secondary factors and
the unidentified OC fraction, defined as the difference between
measured and fit OC (Lee et al., 2008b). The procedure of Polissar
et al. (1998) was used in this study to calculate uncertainties in
the species concentrations. Briefly, for data below DL, the concen-
trations were replaced with the value DL/2 and the uncertainty was
set as (5/6)*DL. For missing data, concentrations were replaced by
the geometric mean and the respective uncertainty was set at four
times that of this mean concentrations. PMF provides uncertainties
in factor profiles (sfkj), defined as the standard deviation of 100
bootstrapping runs. The uncertainty in factor contributions of
species j(sij) is calculated as the product of the factor contribution
(gik) times the uncertainty in the factor profiles (Eq. (14)).

s2ji ¼
X
k

s2fjk g
2
ki (14)

Similar to CMB, POC uncertainty was propagated from the uncer-
tainty in the OC fraction of primary factors (soil dust, biomass
burning, cement and mobile sources). The uncertainty in the SOC
estimatewaspropagated fromtheuncertainty inOC in the secondary
factors (sulfate, nitrate) and theunidentifiedOC fraction. The average
uncertainties for the POC and SOC estimates, over the nine-year
period, are calculated using the root mean square average (Eq. (5)).
Fig. 2. Comparison of the four estimates from 1999-2007. The EC tracer (n¼ 2932) and
regression (n¼ 2932) estimates include the use of summer/winter datasets with
respective (OC/EC)p ratios and regression coefficients. For CMB (n¼ 2698) and PMF
(n¼ 2932) the data was not separated by season. Error bars denote the root mean
square of the uncertainty in POC and SOC fractions estimated by a propagation of
errors.
2.5. Air quality data

Aerosol chemical composition and gas phase data for this project
were obtained for the Jefferson Street (JST) monitoring site, a mixed
industrial-residential area near downtown Atlanta, GA (coordinates
33.7N, 84.4W and at an elevation of 275 m above sea level) during
the period 1/2/1999e12/31/2007. Sampling at JST is part of a larger
study called the Southeastern Aerosol Research and Characteriza-
tion (SEARCH) network. Further information on this study and
characteristics of the network are found elsewhere (Edgerton et al.,
2005, 2006; Hansen et al., 2003). PM2.5 monitoring includes daily
24-hour average measurements of ionic, carbonaceous and metal
species concentrations. For the period, a total of 2937 days had valid
data available. Data treatment of missing data and values below
detection limits was performed as suggested by the network to
ensure data quality. (Hansen et al., 2003). A sample in which one or
moremajor components weremissing after the data treatment was
discarded. Samples from the 4th of July, New Years (12/31) and
adjacent days were removed from the analysis to avoid unusual
noise in the concentrations due to fireworks (e.g. unusually high
K concentrations).Measurements ofWSOC in Atlantawere available
for 120 days in the summer of 2007 (5/17e9/20). TheWSOC fraction
was measured semi-continuously using a PILS-TOC instrument at
the roof of the Ford Environmental Science & Technology building at
the Georgia Institute of Technology (GT). This site is approximately
two miles away from the JST site. More information on the WSOC
measurements can be found elsewhere (Hennigan et al., 2008;
Sullivan and Weber, 2006). We found that OC measured with the
continuous instruments at GT was higher than the OC measured at
JST (5.76 vs 3.97 ug-Cm�3). Explanation for this bias includes the
loss of semi-volatile compounds from the filters (Edgerton et al.,
2005; Turpin et al., 2000) and the positive artifact in the use of
semi-continuous analyzers associated with the low air volume
sampled and instrumental blanks (Offenberg et al., 2007; Peltier
et al., 2007). To estimate the amount of WSOC at JST, we adjusted
the WSOC at GT using the OC ratio between both sites.

WSOCJST ¼ WSOCGT

�
OCJST
OCGT

�
avg

(15)

For the summer of 2007, the (OCJST/OCGT) ratio was 0.69, giving an
estimated averaged WSOC value of 2.29 ug-Cm�3 at JST (vs.
3.31 ug-Cm�3 at GT).

3. Results

During the nine-year period, the average OC concentration in
Atlanta was 4.09� 2.25 ug-Cm�3 (�one standard deviation), with
a summer (AprileSeptember) mean of 3.90�1.80 ug-Cm�3 and
a winter (OctobereMarch) mean of 4.25� 2.63 ug-Cm�3. The
higher OC value in winter in Atlanta is explained by an increase in
mobile emissions and biomass burning activity (Lee et al., 2009;
Zheng et al., 2002) accompanied by a decrease in the mixing layer.

3.1. EC tracer method

The EC tracer method estimates 1.51�1.36 ug-Cm�3 (�root
mean square of the uncertainty as defined in Eq. (5)) of SOC in
summer (39% of OC) and 0.77�1.96 ug-Cm�3 inwinter (18% of OC).
The lower amount of SOC in winter is consistent with the SOC
formationmechanisms and fewer emissions of biogenic VOCs,which
are responsible for a large portion of SOC in Atlanta (Weber et al.,
2007). The greater SOC uncertainty in winter (>100% of the SOC)
vs. summer (90% of the SOC) is explained by the higher uncertainties
in the OC and EC species and the uncertainty in the primary (OC/EC)
ratio during winter. The average of summer and winter estimates
gives a SOC fraction of 1.19�1.71 ug-Cm�3 (29% of OC).

3.2. Regression method

The regression method estimates 1.70� 0.80 ug-Cm�3 of SOC
(44% of OC) in summer and 0.76� 0.60 ug-Cm�3 of SOC (18% of OC)



Table 1
Comparison of SOC Estimates using four methods.

n (days) EC Tracer Regression CMB PMF

2931 2931 2698 2931

POC (ug-Cm�3) 2.90 (2.04)a 2.84 (1.25)b 2.24 (0.41)c 3.18 (0.51)d

SOC (ug-Cm�3) 1.19 (1.71) 1.25 (0.71) 1.92 (0.98) 1.12 (0.87)
SOC/OC 0.29 0.30 0.46 0.26
sSOC/SOC 1.44 0.57 0.51 0.78
CV 1.06 0.60 0.87 0.92
Zero days of SOC 478 0 114 0
Summer SOC

(ug-Cm�3)
1.51 (1.36) 1.70 (0.80) 2.00 (0.93) 1.37 (0.81)

Summer SOC/OC 0.39 0.44 0.51 0.34
sSOC/SOC 0.90 0.47 0.46 0.60
Winter SOC

(ug-Cm�3)
0.77 (1.96) 0.76 (0.60) 1.84 (1.03) 0.86 (0.89)

Winter SOC/OC 0.18 0.18 0.45 0.19
sSOC/SOC 2.56 0.80 0.56 1.03

a Uncertainties in EC tracer method calculated with Eqs. (3)e(5).
b Uncertainties in the regression method calculated with Eqs. (5), (11),(12).
c Uncertainties in CMB calculated with Eqs. (5), (13).
d Uncertainties in PMF calculated with Eqs. (5), (14).
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inwinter. The SOC uncertainty is higher in summer given the larger
concentrations and uncertainties in O3 and SO4 and the larger
values of the regression coefficients. However, the amount of SOC is
significantly lower in winter and the uncertainty represents 80% of
the SOC value vs. 47% in the summer. The overall SOC uncertainty is
driven by the estimate in winter, similar to the EC tracer method.
The average of summer and winter estimates gives a SOC fraction of
1.25� 0.71 ug-Cm�3 (30% of OC).
Fig. 4. Day to day variability of SOC estimates for (a) JuneeJuly 2002 and (b) Dec.
2002eJanuary 2003.
3.3. Chemical mass balance and positive matrix factorization

We applied CMB and PMF with data from 1/2/1999 to 12/31/
2007. The fit between measured and predicted OC was better in
CMB (R2¼ 0.99, n¼ 2698) than PMF (R2¼ 0.77, n¼ 2931). The SOC
Tracer 
(0.77±1.96)

Tracer
(1.51±1.36)

Regression
(0.76±0.60)

Regression
(1.70±0.80)

CMB
(1.84±1.03)

CMB
(2.00±0.93) PMF

(0.86±0.88)

PMF 
(1.37±0.81)

Summer                                   Winter

Fig. 3. Seasonal Estimates of SOC from 1999e2007. Units are ug-Cm�3, for concen-
trations and uncertainties (defined as the root mean square average).
estimates are 1.92� 0.98 ug-Cm�3 (46% of OC) in CMB and
1.12� 0.87 ug-Cm�3 (26% of OC) in PMF. Summer SOC estimates
are higher in both methods (2.00� 0.93 ug-Cm�3 in CMB and
1.37� 0.81 ug-Cm�3 in PMF) with lower uncertainties. In winter,
the uncertainty in the SOC estimate is a significant fraction of
the SOC concentration (56% in CMB &> 100% in PMF). In CMB, it
is known that uncertainties in source contributions are more
influenced by uncertainties in the source profiles than ambient
measurement data (Lee and Russell, 2007). Uncertainties in PMF
are driven by the uncertainty in the measured OC species.
Table 2
Comparison of SOC Estimates with related work, SOC (ug-Cm�3) or (%).

Year-round ug-Cm�3 (%) Summer time ug-Cm�3 (%)

This study, EC tracer 1.19 (30%) 1.52 (40%)
This study, regression 1.25 (33%) 1.70 (44%)
This study, CMB 1.92 (46%) 2.00 (51%)
This study, PMF 1.12 (26%) 1.37 (34%)
EC tracera 34% 34%
CO tracera 45% 57%
Multiple regressiona 27% 35%
Regular CMBb 1.59 (39%) e

CMB-LGOc 2.59 (58%) e

CMB-MMd e 2.43 (57%)
CMB-MMe e 3.18 (75%)
PMFb 0.77 (19%) e

Time resolvedf e 3.9� 2.2 (46%)

a EC tracer, CO tracer and Multiple regression from (Blanchard et al., 2008).
b Regular CMB and PMF from (Lee et al., 2008a).
c CMB-LGO from (Marmur et al., 2005).
d CMB-MM in 1999 from (Zheng et al., 2002).
e CMB-MM in summer 2001 and winter 2002 from (Zheng et al., 2007).
f Time resolved from (Lim and Turpin, 2002).



Table 3
Comparison of SOC Estimates to SOC from CMB-MM and WSOC.

a. CMB-MM b. WSOC

R2 Biasa Errora R2 Bias Error

Regression 0.87 �1.05 1.86 0.50 �0.48 0.93
EC tracer 0.58 �1.45 2.20 0.41 �0.49 1.10
CMB 0.75 �1.53 2.42 0.48 �0.10 0.98
PMF 0.80 �1.30 1.90 0.45 �0.68 1.14

a. CMB-MM from Zheng et al., 2007, b. WSOC from Hennigan et al., 2008.
a Expressed in ug-Cm�3, Bias expressed as 1/N S(SOCi�WSOC) and Error

expressed as 1/N S(SOCi�WSOC)2, where i denotes the method and N the number
of samples.
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3.4. Comparison of SOC estimates and uncertainties

The four methods estimate SOC fractions between 1.12� 0.87
and 1.92� 0.98 ug-Cm�3 representing 26e46% of the OC respec-
tively (Fig. 2). CMB led to the highest estimate of SOC while the PMF
led to the lowest. The EC tracer and the regression methods
provided intermediate estimates of SOC. The higher SOC estimate
in CMB is explained by the inclusion of all unapportioned OC into
one secondary source. The other-OC source in CMB is correlated
with both biomass burning (R2¼ 0.57) and mobile (R2¼ 0.55)
factors in PMF. This correlation can be explained in part by: i) the
other-OC includes primary OC from unidentified sources (such as
meat cooking and natural gas combustion) that may correlate with
biomass burning andmobile factors in PMF, ii) SOCmay be included
in the biomass burning factor in PMF since carbon emitted during
biomass burning is in some cases oxygenated and water soluble
(Lee et al., 2008a), or in the mobile factor since OC emissions from
traffic can potentially evolve into SOC (Robinson et al., 2007).
Fig. 5. Comparison of WSOC measurements with SOC estimates in 2007 by the (a
The low estimate of SOC by PMF has been found in previous studies
in the southeastern US (Lee et al., 2008b). Without use of detailed
oxygenated species, PMF is not able to provide further information
on SOC because of the colinearity of OC sources.

3.4.1. Uncertainties
The lowest uncertainty in the SOC estimate is found in the

regressionmethod and the highest is the EC tracermethod (Table 1).
The CMB uncertainties are comparable to the regression method,
and if expressed as a fraction of the SOC concentrations they are
even lower. The PMF uncertainties are significantly higher than the
uncertainties in the CMB method.

3.4.2. Seasonal estimates
In summer, the proportion of SOC estimated by the four

methods is similar, with CMB having the highest and PMF the
lowest fractions (Fig. 3). In winter, CMB estimates are much higher
than the other methods, indicating the likely inclusion of primary
OC in this fraction and therefore, an overestimate of the SOC
fraction.

3.4.3. Day-to-day variability
During the summer 2002, the four estimates exhibit similar day

to day variability (Fig. 4). In winter 2002/2003, regression is the
only method that yields smooth pattern, which would be expected
for a secondary pollutant. The other estimates have significant
variability typically more associated with primary pollutants. The
lowest coefficient of variance, associated with this temporal trend,
was for the regression method (Table 1). The EC tracer and the CMB
methods had 478 and 114 days of zero estimated SOC, respectively,
occurring when estimated POC is greater than measured OC.
) EC-tracer, (b) regression method, (c) CMB and (d) PMF. Solid line is the 1:1.
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3.5. Comparison with related work

The range of SOC estimates in this study was 26e47% which is
comparable with findings of other studies at Jefferson St in Atlanta
(Table 2). The lowest SOC estimate (19% of OC) was obtained using
PMF (Lee et al., 2008b) and the highest (58% of OC) using CMB-LGO
(Marmur et al., 2005). For summer, our estimates vary from 34
to 51% as compared to results of other studies in Atlanta ranging
from estimated SOC of 34% using the EC tracer method (Blanchard
et al., 2008) to 75% using CMB-MM (Zheng et al., 2007). Since the
time periods differ between studies, different SOC estimates
are expected. Some studies (De Gouw and Jimenez, 2009; Robinson
et al., 2007) suggest an underestimation of SOA in urban centers due
to the rapid formation of SOA from semi-volatile and intermediate-
volatile organic compounds emitted by traffic. Dochertyet al. (2008)
found ratios of SOA/OA between 70e90% on aged aerosols down-
wind of Los Angeles in a summer period with an ozone concentra-
tion of 86ppb. Our SOC estimate is equivalent to 35e57% being SOA
using ratios of SOC/SOA¼ 1.8 and POC/POA¼ 1.2 (similar to
Docherty et al., 2008) and for Atlanta the average 8 h-maximum O3
concentrationwas 60 ppb, lower than the observed in the L.A. basin.
While estimates of SOA formation using aerosol mass spectrometry
have also being conducted (Jimenez et al., 2009), such data were
unavailable in Atlanta for comparison here.

We compare our estimates with results from CMB using
molecular markers during summer of 2001 (Zheng et al., 2007).
Data were not available to conduct a long-term analysis of SOC
estimated by CMB-MM. Here SOC is estimated the same way using
regular CMB, as the difference between measured OC and the
identified primary fraction, but using a greater number of fitting
species from PM2.5 organic speciation. The correlation was stron-
gest with estimates from the regression method (Table 3a).
3.6. Comparison with WSOC measurements

In an effort to compare our estimates with new methods to
quantify organic aerosols, we compared the four estimates with the
WSOC fraction in Atlanta during the summer of 2007, when
biomass burning contribution was negligible (Zhang et al., 2010)
and therefore, we expect WSOC to be a good surrogate of SOC. The
ratio of WSOC/OC observed was 0.52, slightly higher than our
summer SOC/OC estimates (0.34e0.51). The strongest correlation
and the lowest error were between WSOC and estimates from the
regression method (Table 3b). The regression estimate had a slope
close to 1.0 when plotted against WSOC (Fig. 5) indicating a good
estimation of this secondary fraction.
4. Conclusion

Comparison of four methods to estimate the SOC fraction in the
PM2.5 suggests that between 26 and 47% of the OC in Atlanta is
secondary in origin on a year-around basis. Uncertainties in the
estimated SOC fraction range from 51% to more than 100% and are
largely influenced by estimation of SOC in winter time. The SOC
fraction estimated by the regression method has the lowest
uncertainty, a greater value in summer thanwinter, shows less day-
to-day variability and has a more similar trend to the WSOC
measurements as compared to the other methods, suggesting the
regression method is the most accurate method for developing
multi-year SOC estimates, necessary in epidemiologic analysis and
evaluation of air quality policy effectiveness. The regression
method only requires readily measured speciated PM2.5 compo-
nents (i.e., EC, OC, K, sulfate and nitrate), ozone and CO data.
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